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Abstract 

A comparative study has been undertaken of the 
employment of Gaussian and exponential charge dis- 
tribution functions in calculating Coulomb poten- 
tials, energies and fields at arbitrary points due to 
lattice slices, using the Ewald method. The APL 
program SURFPOT has been developed for this pur- 
pose, for a general crystal structure with user-defined 
slice orientations and slice boundary configurations. 
Results are presented for the (111) face of NaC1, 
(001) and (112) faces of aragonite (CaCO3) and (001) 
face of phlogopite (KM3T4OIo(OH)2, M = divalent 
cation, T4 = Si3A1]. The convergence behaviour of the 
potential sums is consistently and considerably better 
when the Gaussian form is used. 

1. Introduction 

Since the predominant mechanism of crystal growth 
is growth by slices, the availability of generally appli- 
cable methods for calculating potentials, electric 
fields, energies and interaction energies of lamina- 
shaped lattices is essential to the study of crystal 
growth. The slices under consideration are parallel 
to (hkl), have infinite extent in two dimensions and 
thickness dhkl , or some fraction thereof, in the third. 
They are charge-neutral and usually nonpolar. The 
points at which potentials and fields are required are 
arbitrary and may be outside the slice or within it or 
coinciding with ion sites. Formulating the problem 
for the face (001) instead of (hkl) does not constitute 
any real limitation. A new unit cell can always be 
found, such that the required face (hkl) in terms of 
the original cell parameters becomes transformed to 
(001) in terms of the new. 

0108-7673/89/060371-10503.00 

The most widespread method for calculating 
Coulomb potentials in ionogenic structures is the 
method of Ewald (1921). It is essentially based on 
the introduction of a continuous spherically sym- 
metric charge distribution function cr dependent on 
an adjustable parameter r/, in addition to the distance 
from a given ion (Tosi, 1964). Thus the charge density, 
and hence also the potential, are split into two contri- 
butions; one formulated in the direct lattice, the other 
in the reciprocal. Each potential sum converges 
independently but depends on r/, whereas the total 
potential is independent of 77. Thus *7 functions as 
the radius of a convergence sphere and is adjusted 
so as to optimize the convergence of both sums. As 
will be shown in §2, neutrality of the unit cell 
guarantees convergence of the potential expression 
for an individual slice. 

The Ewald method assumes its simplest form in 
the case of an infinite lattice but has been extended 
to laminas and to semi-infinite lattices, which are 
infinite only on one side of a plane, the other side 
being empty (Hartman, 1958; Heyes & van Swol, 
1981). The lamina case is most useful because the 
laminas may be stacked at will. Should an infinite or 
semi-infinite lattice be of interest, then a limited num- 
ber of slices need to be stacked to obtain the most 
satisfactory approximation, i.e. convergence in the 
third dimension, provided the chosen unit cell 
possesses no component of dipole moment perpen- 
dicular to (hkI). 

The traditionally chosen functional dependence of 
tr on the distance from a given ion is Gaussian, but 
several other possibilities, including the exponential, 
have been proposed and applied, mostly to rather 
simple structures. Such an application to a cubic 
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structure with two ions led Heyes (1980) to the con- 
clusion that employment of the exponential function 
gave rise to very rapid convergence. Heyes & van 
Swol (1981) carried out an explicit comparison among 
several charge functions including the Gaussian and 
exponential, again for a simple cubic lattice. Accord- 
ing to the results presented in their Table III, the 
Gaussian function denoted by their index s = 2 con- 
verges faster than the exponential, s = 3. However, 
the exponential-based potential initially obtains 
values closer to the final ones. 

The choice of o- may have significant consequences 
on the rapidity of convergence of the potential sums, 
especially for larger or more complicated structures. 
For that reason a comparative study has been under- 
taken of the Gaussian and exponential functions 
which can be incorporated in the Ewald method. 
Their effect on the convergence of the potentials is 
investigated in terms of r/ using more complicated 
structures, partly based on non-orthogonal systems. 
The structures investigated here are: sodium chloride 
face (111); aragonite faces (001) and (112); 
phlogopite face (001). 

When crystal growth occurs from aqueous solutions 
the electric field plays a dominant role in the 
behaviour of the interface; water molecules, being 
dipoles, respond by aligning themselves with the 
maximum field. Further work along this line is in 
progress. 

2. Outline of theoretical results 

The reader is referred to the Appendix for a complete 
list of definitions of symbols used in this section. 

In applying the Ewald method, the charge density 
at R due to all ions in the lattice is split into two parts 
(Tosi, 1964) by adding and subtracting a continuous 
spherically symmetric charge distribution: 

N 

p]°t(R)=E Y. q F ( I R - R j + t [ ,  r/), 
t j = l  

N 

p~°t(RI=E E ¢ b [ 6 ( R - R j + t l - o - ( l R - R j + t [ ,  r/)], 
t j = l  

(1) 

where t is any lattice translation. The t = 0 terms give 
the charge density due to the N ions in the unit cell. 
The densities p]°t(R) and p~°t(R) in (1) give rise to 
potential expressions U~(R, 77) and U2(R, 77) treated 
in the reciprocal and direct space, respectively. The 
total physical potential is the real part of U ( R ) =  
U~(R, r / )+ U2(R, 77), and the slice energy is 

N 

Esl=½ • qjU(Rj) 
j = l  

(Hartman, 1958). 

To begin with the reciprocal space, the Fourier 
coefficient of ptl°t(R, 77) is (Tosi, 1964) 

N 

pk=(1/V) ~, q jexp( iK .Rj )qb(K,  r/); 

j=l (2) 
co 

• (K, r/) = (4r r /K)  ~ xo'(x, r/) sin (Kx) dx. 
0 

With the Gaussian and exponential forms for o- one 
gets (Heyes, 1980; Heyes & van Swol, 1981) 

O r G ( X  , 1'!) = "/7"-3/217 -3 exp [-(x/r/)z], 
(3) 

erE(X, r/) = (8rrr/3) -~ exp (-x/r/), 
co 

j" o'(x, r/) dx = 4vr 5 o'(x, r/)x 2 d x =  1, 
0 

• G(K, r/)=exp(-K2r/2/4), 
(4) 

OE(K, r/) = 77-4/( ' t7 -2"[- K2) 2. 

Applying the definition of Coulomb potential to 
the Fourier decomposition of the charge using (2) 
one gets 

U~(R, 77)= f ([R'-RI) -~ 
all s p a c e  

x ~ exp [ - i K  . (R ' -R)]pK dR' 
K 

N ~(K, n) 
= (47r/V) ~ qj E K 2 

j = l  K 

x exp [ iK.  ( R j - R ) ]  for R ~ Rj. (5) 

It follows from (2) that as K->0, pK'-'>Y~j qff V= 0, 
which vanishes due to charge neutrality of the unit 
cell. Hence since po = 0, the K=  0 term in (5) does 
not contribute. 

When R coincides with an ion site anywhere in a 
layer defined by R j + u a + v b  (u, v integers) the fol- 
lowing self-potential expression for qj must be sub- 
tracted because (5) originates from all charges, 
including qj (Heyes 1980, 1981): 

f qjtr([R'-(Rj+ua+vh)l, r/) dR' 
IR'- (Rj + u a +  vb)l 

all s p a c e  

=4wqj ~ xtr(x, r/) dx. (6) 
0 

The potential due to the desired lattice shape, which 
is a slice, is obtained by the following two-step trans- 
formation carried out originally by Hartman (1958) 
and several other authors since then. K is decomposed 
into components k and k', respectively parallel and 
perpendicular to (001); the position vector R is 
similarly decomposed into components r and z. In 
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the resulting expression (Heyes & van Swol, 1981), 
N 

U~(R, 77)= ~ qj ~ e x p [ i k . ( r j - r ) ] ( 4 7 r / V )  
j = l  Adz 

~-, ~[(k2+k'2)  1/2, */] 
X /_., k 2 d- k '2 

t s ~  - -00  

x exp [ ik ' ( z j -  z)], (7) 

the step from the bulk lattice to a slice one unit cell 
thick is accomplished by letting the period c~co,  
while keeping the ion positions Rj fixed. The discrete 
variable 1., becomes continuous, with the result (Jack- 
son, 1963) 

oo 

l i m ( 1 / V )  ~ . . . = _ _ 1  . . . d k , ;  
c-,oo . . . .  27rA 

--OO 

du = (V/27rA) dk'. 
Finally, 

N oo 

UI(R ,* / )=(2 /A)  ~ qj ~, e x p [ i k . ( r j - r ) ]  
j = l  A,p. = - - o o  

× ~,( k, zj - z, ,7) 

N oo 

- E  q, E Uo(r/)~,R,+u.+~b (8a) 
i = 1  u , v = - - c o  

where 

and 

O(k, z j - z ,  */)= ; tI)[(k2+k'2)'/2'k2+ k, 2 */] 

- -00  

x exp [ik'(zj - z)] dk',  

oo 

Uo(*/) = 47rl xo'(x, */)dx. (8b) 
o 

Further, 

OG( k, z i - z ,  77) 

= (~ /2k ) [exp  (klzj - el) erfc (k*//2 + Izi - zl/*/) 

+ exp ( - k l z j -  zl) erfc (k* / /2 -  I z j -  zl/*/)], 
(9a) 

0E(k, 7.j--Z, */) 

exp ( - k l z j  - z l )  
=Tr 

Iz -  zjl exp [ - I z j -  zl(k 2 + */-2)1/2] 
2(k :+  */-2)*/2 

exp [ - I z j -  zl(k2+ */-2)'/2](2k2 + 3./-2)~ 
2(k2+ ,/-2)3/2 j 

U~(*/)=2/rrl/2*/, U~(*/) = 2/*/, 

(9b) 

(9c) 

and in (9a) use has been made of 

oo 

1/X2= I exp ( -x2 t )  dt. 
0 

The A =/z  = 0 term of (Sa) is evaluated by taking the 
limit of (9a) and (9b) as k ~ 0  or reintegrating with 
the integrand at k -- 0, ignoring divergent terms if they 
are multiplied by the total charge in the unit cell. 

tpc(k = 0, z.i - z , */) 

= -zr[ z j -  z] erf ([zj-  zl/*/) 

- zrl/2*/exp(-[zj - z[2/,/2), (10) 

~ ( k  = 0, z j - z ,  7 )  

= - ½ ~ [ I z j  - e l  + exp (-Izj - z [ / * / ) ( I z j  - e l  + 3 */)]. 

Now consider a different slice, translated by [00m] 
with respect to the slice treated thus far, where m is 
a positive or negative integer. Slice m contains ions 
located at Rj + mc and is identical to the original slice 
when m = 0. The potential originating from slice m 
is given by (8) when Rj is replaced by Rj + me. This 
has consequences for the expressions z j - z  and 
k .  (rj - r ) ,  considering that the newly introduced dis- 
placement me has distance me.  fi = m V / A  from the 
(001) face and component m [ c - ( V / A ) ~ ]  in that 
face. Thus z j - z - z j - z + m V / A  and k . ( r j - r ) ~  
k .  (rj - r +  mc) in (8) and (9). Finally, the total poten- 
tial of a collection of such slices, not necessarily a 
set of adjacent slices, is 

t o t  N 
U 1 ( R , * / ) = ( 2 / A )  ~ qj ~ e x p [ i k . ( r j - r ) ]  

j = 1 A , p  = --oo m 

A ~ 0 o r  
~ 0  

x exp ( imk .  e)d/(k, zj - z +  m V / A ,  */) 
N 

+ ( 2 / A )  ~, qj~, ip(O, z j - z + m V / A ,  */) 
j = l  m 

N oo 

- Y', qj 2 Z U0(*/)Sa,aj+aa+,b+m, 
j = 1 A,p. = --oo rn 

(6x,y = 1 if x = y, otherwise 0). 

(11) 

Equation (11) is in slight disagreement with 
equations (20)-(22) of Heyes & van Swol (1981) 
where the factor exp ( imk.  e) does not appear. Only 
in the case of non-orthogonal unit cells does this 
factor have a value different from 1. This explains 
why Heyes & van Swol did not detect the error since 
they applied their formulas to orthogonal unit cells 
only. 

Continuing with the potential contribution in the 
direct space, we find that the second charge density 
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of (1). characterized by slices [00m], 
N 0o 

p~°t(a) = ~ qj ~ ~, q j[6(d~. , . . ) -o-(d~.m,  */)], 
j = 1 A,/z = --co m 

(12) 

leads to the potential 
N 

U 2 ( R . * / ) = ~  qj ~ Y. ' [ (d~ . , . ) -~+l (d~ . r . ) ]  
j = 1 k . lz  = --co m 

(13a) 

and the prime means that self-potential terms for 
which R = R j + A a + / z b + m c  are excluded from the 
summation. The integral 

f -o-(x, n) 
I(R)= Id~,~-xl dx 

al l  s p a c e  

arising from the cr function of (12) becomes 
d~f~ 

I (d i~ ,m)=-2~ '[ (1 /d i~ . , , )  X20"(X, */) dx  
0 

oo  

+ ~ xo'(x, "I1) dx] (13b) 

and further integration using trG and O" E in (3) results 
in (c f  Heyes, 1980; Heyes & van Swol. 1981) 

IG(d~.m) = -(1/dJx~m) erf (d~.~/*/);  

IE( d~,,m) = exp ( - d ~ , m /  */ ) 

x(1/Zn+l/d],~,,,)-l/d~,~,,,. (13c) 

The electric field vector E is fully described by its 
projections on a, b, c (see also Heyes, 1981): 

N 

E . a / a = ( - 4 . r r / a a )  ~, qj 
j = l  

x ~ ~ s i n k . ( r j - r + m c )  
A,/~ = - 0 o  m 

A ~ O o r  
/ x ~ O  

x O(k, zj - z+  m V / A ,  */) 
oo  N ~,' 

- E qj Z (Q , , / d~ . , , , )  
j = 1 A , ~  = --co m 

x[-(dL.) -~+ ' J [ ( d x ~ m ) ] ,  

N 

E . b / b = ( - 4 . a - / A b )  ~.. qj 
j = l  

oo 

x E E sink. (rj--r+ me) 
A,/~ = - - c o  m 

A ;cO o r  

x ¢(k ,  z j - z +  m V / A ,  */) 
oo  N ~,' 

- Z qJ E ( Q b / d { . , , , )  
j = 1 A , l z  = - - 0 o  m 

x [ - ( d { . m )  -2+ ' J I (d X~,m)] , 

N 

E . c / c = ( 2 V / A 2 c )  E qj 
j = l  

co 

x Z ~" [ c o s k . ( r j - r + m e )  
A,p. = - 0 o  m 

A ~ 0 o r  
/ . t ¢ 0  

× ¢'(k,  z j - z +  m V / A ,  */) 

- (A[  V)k.  c sin k .  (rj - r +  mc) 

x O ( k ,  z j - z + m V / A ,  7/)] 

N 

+ ( 2 V / A 2 c )  ~, qj~. O'(O. z j - z + m V / A ,  */) 
j = l  m 

N 

- ~.. qj ~ ~.' (Q~/d~ , , , , )  
j = 1 A , p .  = - - 0 0  m 

, j x [ - ( d J ~ m ) - 2 +  ] (dx~m)], 

0~(k, y, */) = (sign y)(rr /2)  

x [exp (klyl) erfc (k*//2 + lyl/*/) 
-exp  (-klyl) erfc (k*//2-lyl/*/)], 

6'E(k, y, 7/)= (sign y)Tr{-exp (-klYl) 
+ exp [ - ( k  2 + */-2)1/21y I] 

x [ 1 + lyl/2(k 2 + */-2) u2./2]}, 

0~(0, y, */) = - ~  erf (y/*/), 

0~(0, y, */)= -~r (sign y) 

x [ 1 -  exp (lyl/*/)(1 + lyl/2*/)], 
with y = (zj - z +  m V / A ) ,  

I'G(y) = ( 1/y 2) erf 0 ' /*/)  

- (2/~. , /2)(1/ r /v)  exp (_y2/ , /2) ,  

I'E(y) = - e x p  ( - y /  */)(1/2./2 + 1/y*/+ l /y2),  

with y = d~. , . ,  

Q,. = ( R . -  R ~ - A ) a + ( R b -  R { - l z ) b  cos 3, 

+ (Re - R~ - m)c  cos fl, 

Qb = ( Rb -- RJb- tZ )b + ( R,. - R~ - A )a cos y 

+ (Rc - R ~ -  m)c  cos a, 

Q~ = ( g ~ -  R { -  m ) c +  ( ga - R ~ -  A )a cos/3 

+ (Rb -- R~b-tz)b cos a. 

3. Computation 

The APL program S U R F P O T  computes lamina 
potentials, energies and field vectors at arbitrary 
points with respect to a general structure. The choice 
between Gaussian or exponential form for (r and of 
a value for */ is made by the user. The input data 
also include unit-cell parameters and ion coordinates 
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and charges. A suitable transformation matrix with 
determinant 1 may be optionally introduced to attain 
any required lamina orientation (hkl)# (001). The 
point coordinates at which potential and field are to 
be evaluated are specified in the transformed system 
in one of three ways: (1) a set of ion sites (points 
that form part of the lattice); (2) a set of arbitrary 
points; (3) a sequence of grids parallel to (hkl) gener- 
ated by two steps along the new a' and b' axes, and 
one step along the new c' axis. Apart from the above 
input, the user indicates values of m corresponding 
to slices from which the potential originates, e.g. 
m = - 2  implies a slice removed from the zero slice 
by -2c ' .  Although the potential of each individual 
slice converges, the potential of a semi-infinite lattice, 
approximated by a sequence of slices using e.g. m = 0, 
-1 ,  - 2 , . . .  will not converge, unless the component  
of the dipole moment of the unit cell perpendicular 
to (hkl) vanishes. For a slice of an F (i.e. flat) face 
several different ionic configurations may be possible, 
corresponding to different slice boundaries (Strom, 
1985). It is essential to have a mechanism available 
for selecting specific, usually nonpolar, F configur- 
ations to represent an F slice. This is done by 
optionally assigning lattice translations to the 
individual ions in the unit cell, as will be illustrated 
by the examples of § 4, where all occurring slice 
configurations have been chosen nonpolar. 

The terms in the double potential sums are evalu- 
ated in successive concentric ring-shaped regions 
defined by the radii Do < DI < D 2 . . .  where Do = 0 
and the step D , -  D,_I is internally determined and 
kept constant. Thus the contribution of the nth ring 
is obtained by including those (h,/.~) terms for which 

D,_~ < (A2a'2 + tz2b'E-2Atza'b' COS .)/)1/2 < / 9 ,  

in the case of U,, and 

D,-t  < (A 2a'E + i-t2b'E + 2Atza'b' COS ,)/)1/2< D, 

in the case of U2. The convergence distance D for 
the case under consideration is that DN for which 
the Nth-ring contribution is below a small value. The 
/31 and U2 summations are carried out independently. 

Of the functions occurring in § 2 only the error 
function is not available as primitive. For it the 
following polynomial approximation is chosen 
(Abramowitz & Stegun, 1965) for 0-< x, and the sym- 
metry property e r r ( x ) = - e r f ( - x )  is employed for 
x < 0 :  

e r fx  = 1 - (alt+ a 2 t 2 +  a 3 t 3 +  a4 t 4+  ast 5) 

x exp ( -x2)  + e(x),  

t = l / ( l + p x ) ,  l e ( x ) l - <  1 . 5 x  10 -7 , 

p = 0.327 591 1, al = 0.254 829 592, 

a2 = -0 .284  496 736, a 3 = 1.421 413 741, 

a4 = -1-453 152 027 a5 = 1.061 405 429. 

4 .  A p p l i c a t i o n  

In the following examples the surface structure is 
assumed to be not relaxed and the slice configurations 
are nonpolar. 

The NaC1 unit-cell parameters are a = b =  c =  
5.6398 A, a =/3 = y  =90  °. The choice of new axes 
a'  = b - a and b' = c - b results in (001)' = (111), where 
the primed indices refer to the transformed system. 
The simplest choice for e' leaving the unit-cell volume 
invariant is c '=  c. Because a (111) surface bounded 
by a complete layer of either Na ÷ or C1- ions is 
unstable, the surface structure has to be changed into 
an ordered puckered one, of which the outermost 
layer contains 1/4 and the second layer 3/4 of all 
available ions, as shown in Fig. 1. Thus the new unit 
cell has no dipole moment. Table I shows the resulting 
transformed cell parameters, the ion positions and 
the potentials at the ion sites due to slices m = 0, 
-1  and -2 .  The slice energy Es, amounts to 
-1.95847 e 2/~k -1 per unit-cell content and the sum of 
the interaction energies with the 0 slice corresponds 
to Eat  t = -0-51350 e 2 ~ - 1 .  The total energy Esl + Eatt  = 
Ecr = -2"47197 e 2/~,-' per unit-cell content corre- 
sponds to the Coulomb part of the lattice energy. The 
value should be -8a /a ,  where a is the Madelung 

o ..--?u° o 
/ ¢ / . . . . .  I . ~ ,~1  o o :30 o\; o o 

-.. o. [ .o 

c 

(a) 

u o u / t . ~ o  

o o o (, "o o o 

o o/,o )::( 

o ,, o. /  , o . . . / 7  , , . o . /  o 

_ , ; : -  I , ' \ 7  , - .  
°/"\ °\ i" ° \,,° 

. /  \ \ 1 / /  \ 
"o o o\~"//o o \ 

~_/ 

(b) 

Fig. 1. Original NaCI unit cell in projection (a) onto plane (111), 
and (b) parallel to [121] showing the slice configuration, 
bounded by the wavy broken lines, chosen for the (111) face. 
Squares: Na; circles: CI. 
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Table 1. Ion positions and charges in transformed NaC1 unit cell with parameters a' = b' = 7.9758, c' = 5-6398 ~ ,  
a '  = 45, fl' = 90, 7' = 120 ° 

Potentials  at ion sites o f  (111) slices and  energies.  

Potential  (e A, - l )  

Ion  x '  y '  z '  q Slice 0 Slice - 1  Slice - 2  Total  

CI(1) 0 0 0 -1  0.55145 0.13944 -0.08786 0-60303 
_ _  

Na(1) 1 1 0 -1 /2  -1 /2  1/2 1 -0-46900 -0-13549 0-00157 -0-60292 
Na(2) T 0 0 - 1 / 2  0 1/2 1 -0-46900 -0-13549 0.00157 -0-60292 
Na(3) 0 0 1/2 1 -0-46900 -0.13549 0-00157 -0-60292 
C1(2) T 0 1 -1 /2  0 1 -1 0-46900 0.01984 -0.00267 0-48617 
C1(3) T T 1 -1  -1 /2  1 -1 0-46900 0.01984 -0.00267 0-48617 
C1(4) 1 1 1 -1 /2  -1 /2  1 -1  0.46900 0.01984 -0-00267 0.48617 
Na(4) i 1 1 -1  " -1 /2  3/2 1 -0.55145 -0-00735 -0.00131 -0-56012 

Slice energy (e 2 A-  t): _ 1.95847. 
Interaction energy with slice 0 (e 2/~-1): -0.61279 (slice -1);  0.09929 (slice -2).  
Total energy (e 2 A-t) :  Ecr=-2"47197. 

constant of the NaCI structure, 1.747558, leading to 
-2.47889. The discrepancy is due to neglect of slices 
-3,  -4,  etc. Fig. 2 illustrates the behaviour of the 
potential at the first ion site CI(1), characteristic of 
the remaining sites. The contributions of the exponen- 
tial- and Gaussian-based direct and reciprocal poten- 
tial appear below the corresponding convergence dis- 
tances D for 77 = 3 and 5 A,. 

For the aragonite (001) and (112) faces the poten- 
tial is computed at all ion sites, incorporating slices 
m = 0, - 1 for (001), m = 0, - 1, -2 ,  -3  for slices (112), 
and using 77 values between 2 and 6 A. For the (001) 
slice use is made of the original orthogonal unit cell. 
The slice boundaries are defined by the untranslated 
ions. Cell parameters, ion coordinates, potentials and 
energies are shown in Table 2. The choice of new 
axes a ' = a - b ,  b ' = a + b - c  leads to (001)'=(112), 

Slice 0 Slice -1 Slice -2 

90 

% 
a 5o ~ .  

lO 

J 

10 

x 0 - - - - - ' - =  = = 

~,,,~ 

o T-- 

X 

-lO 

A 

o 
X 

v 

3 5 

Fig. 2. D e p e n d e n c e  on 7/ o f  convergence  radius and  potent ia l ,  
bo th  a p p r o x i m a t e d  by  straight  lines, o f  NaCI  face (111) at the 
CI(1) ion site, for slices 0, -1 and -2. Thick lines: Gaussian 
based; thin lines: exponential based; solid lines: direct-space 
contribution; dashed lines: reciprocal-space contribution. 

and c '=  a is an acceptable possibility. The (112) slice 
boundaries are defined by introducing lattice transla- 
tions to the ions, as shown in Table 3, along with the 
transformed cell parameters, potentials and energies. 
Slice configurations for both the (001) and (112) faces 
are shown in Heijnen's (1986) structure projection 
perpendicular to [110] in Fig. 3. The Ca(I),  O(1) and 
0(6) ion sites suffice to illustrate the behaviour of the 
potentials, shown in Figs. 4 and 5 below the conver- 
gence distance D. The values are in good agreement 
with those of Heijnen (1986) who obtained for the 
total energy -3112.3 kJ mo1-1, which corresponds to 
-12-915 e 2 A, -~ for the four molecules present in the 
unit cell, when the energy of the CO3 group is taken 
into account (-0-98867 e 2/~-~). Heijnen's value 
for the slice energy of (112) then becomes 
-11-4998 e 2 A, -1. 

The cell parameters and ion positions used for the 
(001) slice of phlogopite are listed in Table 4. The 
surface potential and electric field components are 
computed at points of a grid with x = 0, 0 . 1 , . . . ,  1.0 
along the a axis, y = 0, 0.05, 0 . 1 , . . . ,  0.5 along the b 
axis, at levels parallel to (001) defined by z =0.85, 
0 . 9 , . . . ,  1.25 along the c axis. Because of convergence 
efficiency considerations the Gaussian choice is used. 
The contribution of slice m = - 1  is negligible com- 
pared with that of slice m = 0, hence the latter slice 
in the case of phlogopite approximates satisfactorily 
the semi-infinite lattice bounded by (001). Curves of 
constant potential U and electric field magnitude IEI 
are shown as contour plots for z = 0.85 and 1.0 in 
Figs. 6 and 7, superimposed on a structure projection 
on (001), using the upper half of the unit cell. 

Elaboration on the phlogopite results is beyond the 
scope of this paper because a study of phlogopite 
and in particular its interaction with water is now in 
progress. 

5. Concluding remarks 

The results obtained from the NaC1 and aragonite 
cases show remarkable similarities. The convergence 
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Table  2. Ion positions and charges in aragonite unit cell with parameters a = 4 .9614,  b = 7 .9671 ,  c = 5 .7404  ~ ,  
a = f l  = y = 9 0  ° 

Potent ia l s  at  all ion  sites a n d  e n e r g y  o f  (001). 
Po ten t ia l  (e A - l )  

I o n  x y z q Slice 0 Slice - 1  Tota l  

Ca(l)  0.2500 0.4150 0-7597 2 -1.0048 0-0054 -0.9994 
Ca(2) 0.7500 0.5850 0.2403 2 -1-0048 -0-0840 -1.0888 
Ca(3) 0.7500 0.9150 0.7403 2 -1.0888 -0-0046 -1.09348 
Ca(4) 0.2500 0.0850 0.2597 2 -1.0888 0.0091 -1.07978 
C(I)  0-2500 0.7622 0.9138 1 -1-3518 -0-0049 -1.3567 
C(2) 0.7500 0-2378 0.0862 1 -1.3518 0.1518 -1 .2  
C(3) 0.7500 0.2622 0.5862 1 -1.1763 0.0210 -1.1553 
C(4) 0.2500 0.7378 0.4138 1 -1.1763 -0.0471 -1.2234 
O(1) 0.2500 0.9225 0.9038 -1  0-8562 -0-0025 0.8537 
0(2) 0.7500 0.0775 0.0962 -1  0.8562 0.1585 1.0147 
0(3) 0.7500 0.4225 0.5962 -1  1.0243 0.0088 1.0331 
0(4) 0.2500 0.5775 0.4038 -1  1.0243 -0.0198 1.0045 
0(5) 0.4736 0.6810 0-9138 -1  0.8437 -0-0044 0.8393 
0(6) 0.0264 0.8190 0.4138 -1  1.0586 -0.0406 1.018 
0(7) 0.9736 0.3190 0.0862 -1  0-8437 0.1954 1.0391 
0(8) 0.5264 0.1810 0.5862 -1  1.0586 0.0189 1.0775 
0(9) 0.5264 0-3190 0.0862 -1  0.8437 0.1954 1-0391 
O(10) 0.9736 0.1810 0.5862 -1  1-0586 0.0189 1.0775 
O(11) 0.0264 0.6810 0.9138 -1  0.8437 -0.0044 0.8393 
O(12) 0-4736 0-8190 0.4138 -1  1-0586 -0-0406 1-018 

Slice energy (e2A-~):  -12.40047. 
Interaction energy with slice 0 (e 2 A- I ) :  -0.5110 (slice - 1 
Total energy (e 2 A- t ) :  Ecr=-12-9115.  

Table  3. Ion positions in aragonite transformed unit ceil with parameters a ' = 9 - 3 8 5 6 4 ,  b ' =  11 .00193,  
c '=4.9614 A, a '=63 .195 ,  f l '=  58-088, 7 ' =  112.106 ° 

Poten t ia l s  at  all ion  sites a n d  e n e r g y  o f  (112) slices. ( I o n i c  cha rges  as in Tab le  2.) 

Po ten t ia l  (e A -1) 

I o n  x '  y '  z '  Slice 0 Slice - 1 Slice - 2  Slice - 3  To ta l  

Ca(I)  T 0 0 -1.1747 -0.7597 1.1844 -0-9534 -0.0362 -0.0366 0.0049 -1-0213 
Ca(2) T 0 0 -0.8253 -0-2403 0.8156 -0.9534 -0-1951 +0.0497 -0.0049 -1.1038 
Ca(3) 7- 0 0 -1.6553 -0.7403 1.1456 -0.9626 -0.0157 -0.0172 0.0075 -0.9880 
Ca(4) -0.3447 -0.2597 0-8544 -0.9626 -0-2408 0.0593 -0.0032 - 1.1474 
C(1) ~. 0 0 -1.6760 -0.9138 0.8398 -1.6057 0.2440 -0.0083 -0.0055 -1.3755 
C(2) -0.3240 -0.0862 1.1602 - 1.6057 0.0848 0.0011 -0-0063 - 1.5260 
C(3) T 0 0 -0.8484 -0.5862 1.1846 - 1.2131 -0.0738 -0.0048 0-0058 - 1.2859 
C(4) 1 0 0 -1.1516 -0.4138 0-8154 -1.2131 -0.0337 0.0249 0.0059 -1.2160 
O(1) 2 0 0 -1.8263 -0.9038 0-9801 0.5656 0-2083 -0-0175 -0.0001 0.7564 
0(2) -0.1737 -0.0962 1.0199 0.5656 0.1549 0.0160 -0.0072 0.7293 
0(3) i 0 0 -1.0187 -0.5962 1.3649 1-0032 -0.0862 0-0016 0.0027 0.9213 
0(4) T 0 0 -0.9813 -0.4038 0.6351 1.0032 0.0120 -0.0140 0.0085 1.0098 
0(5)  2 0 0 -1.5948 -0.9138 0.9822 0.6390 0.2110 -0.0161 -0-0037 0-8302 
0(6) T 0 0 - 1.2328 -0.4138 0.6730 1-0272 -0.0115 0.0194 0-0118 1.0469 
0(7) -0-4052 -0.0862 1.4650 0.6538 0.0422 -0.0118 -0.0020 0.6821 
0(8) 1 0 0 -0.7672 -0.5862 0.8798 0-9576 0-0629 -0.0381 0-0119 0.9944 
0(9) -0.4052 -0.0862 1.0178 0.6390 0.1174 0.0063 -0.0098 0.7529 
O(10) 1 0 0 -0-7672 -0-5862 1.3270 1-0272 -0-1095 0-0092 0.0038 0.9307 
O(11) 2 0 0 -1.5948 -0.9138 0.5350 0.6538 0-2673 0-0096 -0.0153 0.9153 
O(12) T 0 0 - 1.2328 -0.4138 1.1202 0-9576 -0-0805 0-0351 0.0002 0.9124 

Slice energy (e 2 A -  t ): _ 11.4974. 
Interaction energy with slice 0 (e 2 A- l ) :  -1.5427 (slice -1 ) ;  

2 1 Total energy (e A -  ): Ecr=-12 .909.  
0.1236 (slice -2) ;  0.0075 (slice -3) .  



378 C H A R G E  D I S T R I B U T I O N S  I N  E W A L D  S U R F A C E  P O T E N T I A L S  A N D  F I E L D S  

:~ i r • r---q r - - q " . . Z c : ~  

- T : : ~  - - ~ - - ~ -  ~-:- - ~ : j  . . . .  ~ ;  :~ ~ ' "  c ~  

I-- 1 .______. r q 4, ',____rTL-q____.:___i~____/-r~ r - - q  
E::I[~" r - - - j - /  c:~_', cs~_: 

o ESZ3. - ' ]  CSE] . ' .  ~ / :L----j ;CZ23 
~ . - ' % 1  ~,.-I'" ,' ~ ,' ~', ~; 

r - q  ..t:~.. "4.;~-~. , ' / / / - - q  ,' ;-~ 7 ' , h ~  

(a) 

10 O 11 
3 , i 0 0 [ ~  1 

3 8 

[ ~ ] 4 , 1 0 0  

a ' , l J  

(b) 

C 

D 

Fig. 3. (a) Heijnen's (1986) aragonite (CaCO3) structure projection perpendicular to [110] with slices d00~ and d~12 indicated by dashed 
lines; rectangles: CO3; squares: Ca. The squares partly overlap because they nearly coincide as seen in (b) which is a unit cell 
projected perpendicular to [710]. Small filled circles: C; large open circles: O. The area in black in (a) has a special significance not 
related to the present subject (the figure was copied from Heijnen's work). 

Slice 0 

 iit" ca, 
10- 

O- ~ ~ " ~ ' ~  ~ -- 

-10- ~ 

-16  

Slice -1 

5-  

1 

N, 
0 
x - 5  

-9 , :; ; 

Ol 06  

_ - - -  -_.. -- _--_--_. 

(a) 

r I (A) 

/ / 

(b) 

061. 

i / 
/ 

/ 
/ 

/ 
/ 

Fig. 4. Dependence on ~7 of convergence radius approximated by 
a straight line, and potential approximated when possible by 
a smooth curve, of aragonite face (001) at ion sites Ca(l),  
O(1) and 0(6). Line drawn according to Fig. 2. (a) Slice 0; 
(b) slice -1 .  

Slice 0 

o, 
501 "" 

06  

\ \  

A 

x 

D 

-10- 

(a) 

- - - - . .  - _ _ 

Slice -1  

Ca1 

50-  ~ 

TI(A) 
oi 

. . . .  

06 

2 0  

10- 
A 

O 

× 0- 
v 
D 

- 8  
3 

?.'-~ . . . .  

x \ 
x 

5 3 ' 5 3 

q (A) 

(b) 

Fig. 5. Same as Fig. 4 for aragonite face (112). 



C. S. STROM A N D  P. H A R T M A N  379 

distance required for the exponential choice is con- 
sistently and considerably larger than for the 
Gaussian. This effect is particularly pronounced in 
the m = 0 (112) slice of  aragonite. Indeed there is not 
a single example in which the exponential function 

offers any advantage over the Gaussian or is even as 
satisfactory. 

The Gaussian-based potential is more sensitive to 
the choice of  r/. The dominance of the direct contribu- 
tion over the reciprocal one decreases as the distance 
between sampling point and slice increases, as 
expected. 
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height 0.85 along the c axis; (b) at height 1.0. Because of  the 
low number of  points, equipotential surfaces cross in (b). Fig. 7. Same as Fig. 6 for the electric field magnitude. 
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Table 4. Ion positions and charges in phlogopite unit cell with parameters a = 5.308, b =9-183,  c = 10.14 A,, 
a = 7 = 9 0 , / 3  = 100.07 °, used for the m = 0  (001) slice 

Ion x y z q Ion x y z q 

K(11), 001 0 0 1 1 O(13) 0.0274 0.5 0.1678 -2  
K(12) 0.5 0.5 0 1 O(14) 0.9726 0-5 0-8322 -2  
T(1) 0.4249 0-1663 0-7755 3.75 O(21) 0.1792 0.2347 0.8318 -2  
T(2) 0-5751 0.8337 0-2245 3.75 0(22) 0.8208 0.7653 0.1682 '-2 
T(3) 0- 5751 0.1663 0.2245 3" 75 0(23 ) 0.8208 0.2347 0.1682 - 2 
T(4) 0.4249 0.8337 0.7755 3.75 0(24) 0-1792 0.7653 0.8318 - 2 
T(5) 0.9249 0-6663 0-7755 3"75 0(25) 0-6792 0.7347 0-8318 -2  
T(6) 0.0751 0.3337 0.2245 3.75 0(26) 0-3208 0.2653 0-1682 -2  
T(7) 0.0751 0.6663 0.2245 3"75 0(27) 0.3208 0.7347 0-1682 -2  
T(8) 0.9249 0.3337 0.7755 3.75 0(28) 0.6792 0.2653 0-8318 -2  
M(11) 0 0.1694 0"5 2 O(31) 0-3709 0.1661 0.6104 -2  
M(12) 0-5 0.6694 0.5 2 0(32) 0.6291 0.8339 0-3896 -2  
M(13) 0 0.8306 0-5 2 0(33) 0-6291 0.1661 0.3896 -2  
M(14) 0.5 0.3306 0"5 2 0(34) 0.3709 0.8339 0.6104 -2  
M(21) 0 0-5 0.5 2 0(35) 0.8709 0.6661 0.6104 -2  
M(22) 0"5 0 0.5 2 0(36) 0.2191 0.3339 0.3896 -2  
H(1) 0.0992 0 0.3015 1 O(37) 0-1291 0.6661 0.3896 -2  
H(2) 0.9008 0 0"6985 1 0(38) 0.8709 0.3339 0.6104 -2  
H(3) 0-5992 0.5 0.3015 1 O(41) 0.1327 0 0-4017 -2  
H(4) 0-4008 0.5 0.6985 1 O(42) 0.8673 0 0- 5983 - 2 
O(11) 0.5274 0 0.1678 -2  0(43) 0-6327 0-5 0-4017 -2  
O(12) 0-4726 0 0.8322 -2  0(44) 0.3673 0.5 0-5983 -2  

A P P E N D I X  
L i s t  o f  s y m b o l s  

a, b, c, and a*, b*, c* 
a* = b x c~ V etc. 

a, /3 ,  y 
V = a . b x c  
A=la×bl 
fi = c*/c*,  with c* = A~ V 
K = 2~r(A a* +/~b* + vc*) 

A, /~, v integers 
k ' =  2 ~ r ( A a * .  f i + / ~ b * ,  fi 

+ vc*)~ 

Direct- and 
reciprocal-lattice 
vectors 

Lattice angles 
Unit-cell volume 
Unit-cell area l[ (001) 
The (001) face normal  
Reciprocal-latt ice 

translat ion 
Componen t  of  K 

_1_(001) 
k = 27rfi x (Aa* x fi+/.~b* x fi) Componen t  of  K 

= ( 2 r r / A ) ( A b x  fi+/xfi x a) ]l(001) 
K = (k2+ k'2) 1/2, 

k = lk[ = ( 2"n'/ A )( X 2 b 2+ ~2 a2 - 2Xt~ab cos y),/2, 
k .  c = - ( 2 7 r c / s i n  2 y ) [ ( X / a ) ( c o s  a cos T - c o s / 3 )  

+ ( / z /b ) (cos /3  cos y - c o s  a ) ]  
R j =  R ~ a +  R~b+  R~c 

= rj +z j ;  qj, j = l , . . . , N  
R = R a a +  Rbb+ Roe = r + z  

r, rill(001) and z, zj_L(001) 

Ion positions and 
charges 

Arbitrary posit ion 
vector 

k .  ( r j - r +  me) 
= 27r[A ( R ~ -  Ra)+ I.t(RJb - Rb)] 

+ ( R ~ - R c + m ) k . c ,  

z j - z + m V / A  
= ( R ~ - R c + m ) V / A ,  

t = A a + / z b + m c  

A, /z, m integers 
d~,,.  = R -  R j -  A a - / x b -  mc, 
d~,~,m -- Id{,~.ml 
erf 
erfc 

Direct-lattice trans- 
lation 

m is slice index 

Error function 
Complementa ry  error 

function 
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