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Abstract

A comparative study has been undertaken of the
employment of Gaussian and exponential charge dis-
tribution functions in calculating Coulomb poten-
tials, energies and fields at arbitrary points due to
lattice slices, using the Ewald method. The APL
program SURFPOT has been developed for this pur-
pose, for a general crystal structure with user-defined
slice orientations and slice boundary configurations.
Results are presented for the (111) face of NaCl,
(001) and (112) faces of aragonite (CaCQ,) and (001)
face of phlogopite (KM;T,0,,(OH),, M =divalent
cation, T, = Si;Al]. The convergence behaviour of the
potential sums is consistently and considerably better
when the Gaussian form is used.

1. Introduction

Since the predominant mechanism of crystal growth
is growth by slices, the availability of generally appli-
cable methods for calculating potentials, electric
fields, energies and interaction energies of lamina-
shaped lattices is essential to the study of crystal
growth. The slices under consideration are parallel
to (hkl), have infinite extent in two dimensions and
thickness d,, or some fraction thereof, in the third.
They are charge-neutral and usually nonpolar. The
points at which potentials and fields are required are
arbitrary and may be outside the slice or within it or
coinciding with ion sites. Formulating the problem
for the face (001) instead of (hkl) does not constitute
any real limitation. A new unit cell can always be
found, such that the required face (hkl) in terms of
the original cell parameters becomes transformed to
(001) in terms of the new.

0108-7673/89/060371-10$03.00

The most widespread method for calculating
Coulomb potentials in ionogenic structures is the
method of Ewald (1921). It is essentially based on
the introduction of a continuous spherically sym-
metric charge distribution function o dependent on
an adjustable parameter 7, in addition to the distance
from a given ion (Tosi, 1964). Thus the charge density,
and hence also the potential, are split into two contri-
butions; one formulated in the direct lattice, the other
in the reciprocal. Each potential sum converges
independently but depends on 7, whereas the total
potential is independent of 7. Thus 7 functions as
the radius of a convergence sphere and is adjusted
so as to optimize the convergence of both sums. As
will be shown in §2, neutrality of the unit cell
guarantees convergence of the potential expression
for an individual slice.

The Ewald method assumes its simplest form in
the case of an infinite lattice but has been extended
to laminas and to semi-infinite lattices, which are
infinite only on one side of a plane, the other side
being empty (Hartman, 1958; Heyes & van Swol,
1981). The lamina case is most useful because the
laminas may be stacked at will. Should an infinite or
semi-infinite lattice be of interest, then a limited num-
ber of slices need to be stacked to obtain the most
satisfactory approximation, ie. convergence in the
third dimension, provided the chosen unit cell
possesses no component of dipole moment perpen-
dicular to (hkl).

The traditionally chosen functional dependence of
o on the distance from a given ion is Gaussian, but
several other possibilities, including the exponential,
have been proposed and applied, mostly to rather
simple structures. Such an application to a cubic

© 1989 International Union of Crystallography



372 CHARGE DISTRIBUTIONS IN EWALD
structure with two ions led Heyes (1980) to the con-
clusion that employment of the exponential function
gave rise to very rapid convergence. Heyes & van
Swol (1981) carried out an explicit comparison among
several charge functions including the Gaussian and
exponential, again for a simple cubic lattice. Accord-
ing to the results presented in their Table III, the
Gaussian function denoted by their index s =2 con-
verges faster than the exponential, s =3. However,
the exponential-based potential initially obtains
values closer to the final ones.

The choice of o may have significant consequences
on the rapidity of convergence of the potential sums,
especially for larger or more complicated structures.
For that reason a comparative study has been under-
taken of the Gaussian and exponential functions
which can be incorporated in the Ewald method.
Their effect on the convergence of the potentials is
investigated in terms of n using more complicated
structures, partly based on non-orthogonal systems.
The structures investigated here are: sodium chloride
face (111); aragonite faces (001) and (112);
phlogopite face (001).

When crystal growth occurs from aqueous solutions
the electric field plays a dominant role in the
behaviour of the interface; water molecules, being
dipoles, respond by aligning themselves with the
maximum field. Further work along this line is in
progress.

2. Outline of theoretical results

The reader is referred to the Appendix for a complete
list of definitions of symbols used in this section.

In applying the Ewald method, the charge density
at R due to all ions in the lattice is split into two parts
(Tosi, 1964) by adding and subtracting a continuous
spherically symmetric charge distribution:

PY(R) =% Z go(IR—R;+t|, n),

t j=1

(1)
N
P (R)=% ¥ g[8(R-R;+t)—a([R—R;+t|, n)],

t j=1

where t is any lattice translation. The t =0 terms give
the charge density due to the N ions in the unit cell.
The densities p'°'(R) and p%'(R) in (1) give rise to
potential expressions U,(R, ) and U,(R, 7) treated
in the reciprocal and direct space, respectively. The
total physical potential is the real part of U(R)=
Ui(R, n)+ U,(R, n), and the slice energy is

U(R))

(Hartman, 1958).

SURFACE POTENTIALS AND FIELDS

To begin with the reciprocal space, the Fourier
coefficient of p\*'(R, 7) is (Tosi, 1964)

px=(1/V) T g;exp (K. R)S(K, n);
"; (2)
®(K,n)=(47/K) | xo(x, n) sin (Kx) dx.
(1]

With the Gaussian and exponential forms for o one
gets (Heyes, 1980; Heyes & van Swol, 1981)

oc(x,n)=7"*nexp[-(x/7)],
oelx, ) = Bmn®) Vexp (-x/m), )
Jo(x,n)dx=4x T a(x, n)x*dx=1,
Ds(K, n)=exp (—K’n?/4), @)

Pe(K, n)=n"*/(n+ K~

Applying the definition of Coulomb potential to
the Fourier decomposition of the charge using (2)
one gets

Ui(R, n) = J (IR'-R))™

all space

xz exp [—iK .(R'—R)]pk dR’

—(47T/V)Z Z‘D(K,'fl)
K

xexp[iK.(R;—R)] forR#R;. (5)

It follows from (2) that as K- 0, px~>2; 9,/ V=0,
which vanishes due to charge neutrality of the unit
cell. Hence since p,=0, the K=0 term in (5) does
not contribute.

When R coincides with an ion site anywhere in a
layer defined by R;+ua+vb (u, v integers) the fol-
lowing self-potential expression for g; must be sub-
tracted because (5) originates from all charges,
including gq; (Heyes 1980, 1981):

|

all space

q,0(|[R'— (R, + ua+ovb)|, )
IR'— (R, + ua+vb)|

dR’

=47q; | xo(x, ) dx. (6)
0

The potential due to the desired lattice shape, which
is a slice, is obtained by the following two-step trans-
formation carried out originally by Hartman (1958)
and several other authors since then. K is decomposed
into components k and k', respectively parallel and
perpendicular to (001); the position vector R is
similarly decomposed into components r and z. In
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the resulting expression (Heyes & van Swol, 1981),
N
Ui(R,m)=)_ q; ) exp[ik.(r;—1)](4m/V)
Jj=1 Ap

= P[(K*+K?)2, q]
X Z k2+ k12

xexp [ik'(z - 2)], (7

the step from the bulk lattice to a slice one unit cell
thick is accomplished by letting the period c¢- 0,
while keeping the ion positions R; fixed. The discrete
variable » becomes continuous, with the result (Jack-
son, 1963)

s

lim (1/V)

I

-0

1
e e dk’
27A J- dk’s

dv=(V/27A)dk'.

Finally,
N )
UR,7)=(2/A) ¥ q;j Y explik. (rj -r)]
ji=1 A =—00
X ‘ll(k: Zj_z’ 7])
N o

- .gl qi g_ Uo("l)an,k,.+ua+ub (8a)

where

o)

Yk, zi—z,1m)= J

—00

PL(K2+ k)2, 7]
K+ k”?

xexp [ik'(z;—z)] dk’,

and

Uy(n)= 47rT xo(x, n) dx. (8b)

Further,
l»[/G(k’ Z;— 2z, TI)
= (m/2k)[exp (k|z —z|) erfc (kn/2+|z—z|/7)
+exp (—klz; — 2]) erfe (kn/2 |z — 2|/ n)],
(%a)
Ye(k, z—z, 1)
_ ﬂ{exp (=klz—z])
k
_|z=zlexp [~z —z|(kK*+ %)%
2(k*+n ")
_exp [~z —z|(K>+ n_z)'/z](2k2+3n_2)}
2(k2+17_2)3/2 ’

(9b)

U§(n)=2/7"n, Us(n)=2/n, (9¢)
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and in (9a) use has been made of
1/x*= | exp (—x*t) d¢.
(V]

The A = u =0 term of (8a) is evaluated by taking the
limit of (9a) and (9b) as k- 0 or reintegrating with
the integrand at k = 0, ignoring divergent terms if they
are multiplied by the total charge in the unit cell.

l!’G(k=01 zj_z’ 7])
— — iz~ 2] exf (15— 2I/7)
— 2

n exp(—|z —z|’/n?), (10)

"IIE(k:O, zj_z: 77)
= —3wllz;— 2| +exp (=|z;— 2|/ n)(|z — z] + 37)].

Now consider a different slice, translated by [00m ]
with respect to the slice treated thus far, where m is
a positive or negative integer. Slice m contains ions
located at R; + mc and is identical to the original slice
when m =0. The potential originating from slice m
is given by (8) when R; is replaced by R;+ me. This
has consequences for the expressions z;—z and
k. (r;—r), considering that the newly introduced dis-
placement mec has distance mc.i=mV/A from the
(001) face and component m[c—(V/A)i] in that
face. Thus z—z->z-z+mV/A and k.(r;~r)~>
k. (rj—r+ mc) in (8) and (9). Finally, the total poten-
tial of a collection of such slices, not necessarily a
set of adjacent slices, is

E Yexplik.(r;~r)]

=—00m
A#0or
n#*0

x exp (imk.c)y(k,z;—z+mV/A, )

N
UCR m=(2/A) T )

Jj=1

+(2/A) L 400, 5-z+mV/Am)

Z Z Uo("l)5R,R,+,\a+ub+mc

Au=—00m

N
-2 g
i=1

(8xy=1if x=y, otherwise 0).

(11)

Equation (11) is in slight disagreement with
equations (20)-(22) of Heyes & van Swol (1981)
where the factor exp (imk . ¢) does not appear. Only
in the case of non-orthogonal unit cells does this
factor have a value different from 1. This explains
why Heyes & van Swol did not detect the error since
they applied their formulas to orthogonal unit cells
only.

Continuing with the potential contribution in the
direct space, we find that the second charge density
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of (1), characterized by slices [00m],

N Lo .
P;OI(R) = E] qj \ E_ Z qj[s( {y,m) _U(diy,m s 7’)]3
i " (12)

leads to the potential

N o
UxR, n) = El % g_ Y (dhpm) (A )]
‘ (13a)

and the prime means that self-potential terms for
which R=R;+Aa+ub+ mc are excluded from the
summation. The integral

I(R)= J

all space

—a(x, )

- dx
|d{\y-m_xl

arising from the o function of (12) becomes
Al m
H(dym) = =27[(1/ dpm) | %°0(x,7)dx
0

+ °f xo(x, 1) dx] (13b)

Apm

and further integration using o and o in (3) results
in (¢f. Heyes, 1980; Heyes & van Swol, 1981)

Io(d}m) = —(1/ d}m) erf (A3 um/ M);

Ie(dum) = €xp (= dpm/ M)
x(1/2n+1/d},m)—1/dium.  (13¢)

The electric field vector E is fully described by its

projections on a, b, ¢ (see also Heyes, 1981):

E.a/a=(—-4w/Aa) g q;

x Y Ysink.(rj—r+mc)

Ap=—00 m
A#0or

nE0
xy(k,z;—z+mV/A, n)
N =) .
- Z qj z Z, (Qa/d{\y,m)
j=1 Ap=—00 m

X [—(dum) 2+ I'(d m)],

E.b/b=(—4m/Ab) § q;

j=

x Y Ysink.(r;—r+mc)

A, p=—00 m

A#Oor

n#0
xy(lk,zi—z+mV/A, n)
_'Zl q; ) Z'(Qb/d{mm)
j= Ap=—0 m

X [=(d3um) 2+ I'(dFm)],

SURFACE POTENTIALS AND FIELDS
N

E.c/c=(2V/A%) ¥ g;
j=1

X %o: Y [cosk.(r;—r+mc)

Ap=—00 m
A#0or
0

X '(k, z— 2+ mV/ A, )
—(A/V)k.csink.(r;—r+mc)
xy(k,z;—z+mV/A, )]

g2 ¢'(0,z;—z+mV/A,7)

1

N
+(2V/A%) ¥

S S (Qu/dhm)

—jgl q; =
X [=(@pm) 2+ I'(d )],
Yok, y, m) = (sign y)(m/2)
x [exp (k|y|) erfc (kn/2+|y|/n)
—exp (—k|y|) erfc (kn/2—|y|/7)],
Ye(k, y, n) = (sign y) w{—exp (—k|y|)
+exp [—(k*+ 717" yl]
x[1+|yl/2(k*+ 57329},
¥6(0,y, ) =—merf (y/m),
¥e(0, y, n) = —m (sign y)
x[1=exp ([yl/m) (1 +|yl/2m)],
with y =(z;,—z+mV/A),
Ia(y)=(1/y*) erf (y/m)
=(2/7'?)(1/qv) exp (=y*/ n°),
£(y)=—exp (=y/7)(1/20*+1/yn+1/y?),
with y=d3,.m,
Q.=(R,—R.l-A)a+(R,—Ri—pu)bcosy
+(R.~Ri—m)c cos B,
,=(Ry, —R{—pu)b+(R,—R.—A)acos y
+(R.—Ri—m)ccos a,
Q.=(R.—R.i-m)c+(R,—R.—A)a cos B
+ (R, — R — )b cos .

3. Computation

The APL program SURFPOT computes lamina
potentials, energies and field vectors at arbitrary
points with respect to a general structure. The choice
between Gaussian or exponential form for o and of
a value for 7 is made by the user. The input data
also include unit-cell parameters and ion coordinates
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and charges. A suitable transformation matrix with
determinant 1 may be optionally introduced to attain
any required lamina orientation (hkl)# (001). The
point coordinates at which potential and field are to
be evaluated are specified in the transformed system
in one of three ways: (1) a set of ion sites (points
that form part of the lattice); (2) a set of arbitrary
points; (3) a sequence of grids parallel to (hkl) gener-
ated by two steps along the new a’ and b’ axes, and
one step along the new ¢’ axis. Apart from the above
input, the user indicates values of m corresponding
to slices from which the potential originates, e.g.
m = -2 implies a slice removed from the zero slice
by —2¢’. Although the potential of each individual
slice converges, the potential of a semi-infinite lattice,
approximated by a sequence of slices using e.g. m =0,
—1, —2,... will not converge, unless the component
of the dipole moment of the unit cell perpendicular
to (hkl) vanishes. For a slice of an F (i.e. flat) face
several different ionic configurations may be possible,
corresponding to different slice boundaries (Strom,
1985). It is essential to have a mechanism available
for selecting specific, usually nonpolar, F configur-
ations to represent an F slice. This is done by
optionally assigning lattice translations to the
individual ions in the unit cell, as will be illustrated
by the examples of § 4, where all occurring slice
configurations have been chosen nonpolar.

The terms in the double potential sums are evalu-
ated in successive concentric ring-shaped regions
defined by the radii Dy<D,<D,... where Dy;=0
and the step D, — D, _, is internally determined and
kept constant. Thus the contribution of the nth ring
is obtained by including those (A, u) terms for which

D,_,<(A’a+p’b”—2Apa'b’ cos y')*< D,
in the case of U,, and
D,_,<(A’a”+u’b?+22pua'b’ cos y)*<= D,

in the case of U,. The convergence distance D for
the case under consideration is that Dy for which
the Nth-ring contribution is below a small value. The
U, and U, summations are carried out independently.

Of the functions occurring in § 2 only the error
function is not available as primitive. For it the
following polynomial approximation is chosen
(Abramowitz & Stegun, 1965) for 0= x, and the sym-
metry property erf (x)=—erf (—x) is employed for
x<0:

erf x =1—(a,t+ a,t*+ a; 2+ a,t* + ast®)
x exp (—x*) + &(x),
t=1/(1+px), le(x)|=1-5%x1077,
p=0-3275911, a,;=0-254 829 592,
a,=—0-284496 736, a;=1-421413741,
a,=-—1-453152027 as=1-061405 429.
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4. Application

In the following examples the surface structure is
assumed to be not relaxed and the slice configurations
are nonpolar.

The NaCl unit-cell parameters are a=b=c=
5-6398 A, o =B =vy=90° The choice of new axes
a’'=b—aand b'=c—bresults in (001)’=(111), where
the primed indices refer to the transformed system.
The simplest choice for ¢’ leaving the unit-cell volume
invariant is ¢'=¢. Because a (111) surface bounded
by a complete layer of either Na™ or CI™ ions is
unstable, the surface structure has to be changed into
an ordered puckered one, of which the outermost
layer contains 1/4 and the second layer 3/4 of all
available ions, as shown in Fig. 1. Thus the new unit
cell has no dipole moment. Table 1 shows the resulting
transformed cell parameters, the ion positions and
the potentials at the ion sites due to slices m =0,
—1 and -2. The slice energy E, amounts to
—1-95847 e* A~ per unit-cell content and the sum of
the interaction energies with the 0 slice corresponds
to E,.=—0-51350 ¢> A™'. The total energy E + E,.=
E..=-2-47197¢* A" per unit-cell content corre-
sponds to the Coulomb part of the lattice energy. The
value should be —8a/a, where « is the Madelung

Fig. 1. Original NaCl unit cell in projection (a) onto plane (111),
and (b) parallel to [121] showing the slice configuration,
bounded by the wavy broken lines, chosen for the (111) face.
Squares: Na; circles: Cl.
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Table 1. Ion positions and charges in transformed NaCl unit cell with parameters a’ = b’ =7-9758, ¢' = 5-6398 A,
a'=45, B'=90, v =120°

Potentials at ion sites of (111) slices and energies.

Ion x' y z' q
Cl(1) 0 0 0 -1
Na(1) 110 -1/2 -1/2 1/2 1
Na(2) 100 -1/2 0 1/2 1
Na(3) 0 0 1/2 1
Cl(2) 101 -1/2 0 1 -1
CI(3) 111 -1 -1/2 1 -1
Cl(4) 111 -1/2 -1/2 1 -1
Na(4) 111 -1 ¢ -1/2 3/2 1

Slice energy (e A™'): —1-95847.

Potential (¢ A™")

Slice 0 Slice -1 Slice -2 Total
0-55145 0-13944 —0-08786 0-60303
—0-46900 —0-13549 0-00157 —0-60292
—0-46900 —0-13549 0-00157 -0-60292
~0-46900 —-0-13549 0-00157 -0-60292
0-46900 0-01984 —0-00267 0-48617
0-46900 0-01984 —0-00267 0-48617
0-46900 0-01984 -0-00267 0-48617
—0-55145 —0-00735 -0-00131 —0-56012

Interaction energy with slice 0 (e A™'): —0-61279 (slice —1); 0-09929 (slice —2).

Total energy (e A™"): E,, = —2:47197.

constant of the NaCl structure, 1-747558, leading to
—2-47889. The discrepancy is due to neglect of slices
—3, —4, etc. Fig. 2 illustrates the behaviour of the
potential at the first ion site C1(1), characteristic of
the remaining sites. The contributions of the exponen-
tial- and Gaussian-based direct and reciprocal poten-
tial appear below the corresponding convergence dis-
tances D for =3 and 5 A.

For the aragonite (001) and (112) faces the poten-
tial is computed at all ion sites, incorporating slices
m=0, —1for (001), m=0, -1, -2, -3 forslices (112),
and using 7 values between 2 and 6 A. For the (001)
slice use is made of the original orthogonal unit cell.
The slice boundaries are defined by the untranslated
ions. Cell parameters, ion coordinates, potentials and
energies are shown in Table 2. The choice of new
axes a’=a—b, b'=a+b—c leads to (001)'=(112),

Slice O Slice -1 Slice -2
90
z |- \ -
Do / =
10 L~ v T T T v
_\10- — —_
- ¢ 2..( q:’.
- ——— ) ?
e e |. e
: 04 ====== : | __\_*\._: : J
> o) > e
\
10 r
3 5 3 5

: :
nA) °

Fig. 2. Dependence on 7 of convergence radius and potential,
both approximated by straight lines, of NaCl face (111) at the
CI(1) ion site, for slices 0, ~1 and —2. Thick lines: Gaussian
based; thin lines: exponential based; solid lines: direct-space
contribution; dashed lines: reciprocal-space contribution.

and ¢’ = a is an acceptable possibility. The (112) slice
boundaries are defined by introducing lattice transla-
tions to the ions, as shown in Table 3, along with the
transformed cell parameters, potentials and energies.
Slice configurations for both the (001) and (112) faces
are shown in Heijnen’s (1986) structure projection
perpendicular to [110] in Fig. 3. The Ca(1), O(1) and
0O(6) ion sites suffice to illustrate the behaviour of the
potentials, shown in Figs. 4 and 5 below the conver-
gence distance D. The values are in good agreement
with those of Heijnen (1986) who obtained for the
total energy —3112:3 kJ mol ™}, which corresponds to
—12-915 e A~ for the four molecules present in the
unit cell, when the energy of the CO; group is taken
into account (—0-98867¢%A7). Heijnen’s value
for the slice energy of (112) then becomes
—-11-4998 > A"

The cell parameters and ion positions used for the
(001) slice of phlogopite are listed in Table 4. The
surface potential and electric field components are
computed at points of a grid with x=0, 0-1,...,1-0
along the a axis, y=0, 0-05, 0-1,...,0-5 along the b
axis, at levels parallel to (001) defined by z=10-85,
0-9,...,1:25along the c axis. Because of convergence
efficiency considerations the Gaussian choice is used.
The contribution of slice m =—1 is negligible com-
pared with that of slice m =0, hence the latter slice
in the case of phlogopite approximates satisfactorily
the semi-infinite lattice bounded by (001). Curves of
constant potential U and electric field magnitude |E|
are shown as contour plots for z=0-85 and 1-0 in
Figs. 6 and 7, superimposed on a structure projection
on (001), using the upper half of the unit cell.

Elaboration on the phlogopite results is beyond the
scope of this paper because a study of phlogopite
and in particular its interaction with water is now in
progress.

5. Concluding remarks

The results obtained from the NaCl and aragonite
cases show remarkable similarities. The convergence
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Table 2. Ion positions and charges in aragonite unit cell with parameters a = 4-9614, b=7-9671, ¢ =5-7404 A,
= B =y= 90°

Ion

Ca(1)
Ca(2)
Ca(3)
Ca(4)
C(1)
C(2)
C(3)
C(4)
o(1)
0(2)
0(3)
0O(4)
0o(5)
0(6)
o(7)
0O(8)
0(9)
0(10)
o(11)
0(12)

X

0-2500
0-7500
0-7500
0-2500
0-2500
0-7500
0-7500
0-2500
0-2500
0-7500
0-7500
0-2500
0-4736
0-0264
0-9736
0-5264
0-5264
0-9736
0-0264
0-4736

Slice energy (e? A™'): —12-40047.
Interaction energy with slice 0 (e? A7"): —0-5110 (slice —1).
Total energy (e’ A™'): E,,

=-12911

Potentials at all ion sites and energy of (001).

y
0-4150
0-5850
0-9150
0-0850
0-7622
0-2378
0-2622
0-7378
0-9225
0-0775
0-4225
0-5775
0-6810
0-8190
0-3190
0-1810
0-3190
0-1810
0-6810
0-8190

5.

z

0-7597
0-2403
0-7403
0-2597
0-9138
0-0862
0-5862
0-4138
0-9038
0-0962
0-5962
0-4038
0-9138
0-4138
0-0862
0-5862
0-0862
0-5862
0-9138
0-4138

—_——— R D

Potential (¢ A™Y)

Slice 0

—1-0048
—1-0048
—1-0888
—1-0888
—-1-3518
-1-3518
-1-1763
—1-1763
0-8562
0-8562
1-0243
1-0243
0-8437
1-0586
0-8437
1-0586
0-8437
1-0586
0-8437
1-0586

Slice —1

0-0054

—0-0840
~0-0046

0-0091

—0-0049

0-1518
0-0210

-0-0471
—-0-0025

0-1585
0-0088

—0-0198
—0-0044
—0-0406

0-1954
0-0189
0-1954
0-0189

—0-0044
—0-0406

Total

—0-9994
—1-0888
—1-09348
~1-07978
-1:3567
-1-2
-1-1553
—1-2234
0-8537
1-0147
1-0331
1-0045
0-8393
1-018
1-0391
1-0775
1-0391
1-0775
0-8393
1-018

Table 3. Ion positions in aragonite transformed unit cell with parameters a’'=9-38564, b'=11-00193,
c'=49614 A, a'=63-195, B'=58-088, ¥ =112-106°

Ion

Ca(1)
Ca(2)
Ca(3)
Ca(4)
Cc(1)
C(2)
C(3)
C(4)
o(1)
0(2)
0(3)
0(4)
0o(5)
0(6)
0O(7)
O(8)
0(9)
0(10)
o(11)
0(12)

100
200
100

Potentials at all ion sites and energy of (112) slices. (Ionic charges as in Table 2.)

Potential (e A™!)

’

X

-1-1747
—0-8253
—1-6553
—0-3447
—1-6760
—0-3240
—0-8484
-1:1516
-1-8263
-0-1737
-1-0187
—0-9813
—1-5948
-1-2328
—0-4052
=0-7672
—0-4052
—0-7672
—1-5948
-1-2328

Slice energy (¢? A™'): —11-4974.
Interaction energy with slice 0 (e? A7): —1-5427 (slice —1); 0-1236 (slice —2); 0-0075 (slice —3).
Total energy (e A™'): E., =—12-909.

'

y
—0-7597
—0-2403
—0-7403
—0-2597
—0-9138
—0-0862
—0-5862
~0-4138
—0-9038
—0-0962
—0-5962
—0-4038
—0-9138
—0-4138
—0-0862
—0-5862
—0-0862
—0-5862
—0-9138
—0-4138

'

z

1-1844
0-8156
1-1456
0-8544
0-8398
1-1602
1-1846
0-8154
0-9801
1-0199
1-3649
0-6351
0-9822
0:6730
1-4650
0-8798
1-0178
1-3270
0:5350
1-1202

Slice 0

—0-9534
—0-9534
—0-9626
-0-9626
—1:6057
-1-6057
-1-2131
-1:2131
0-5656
0:5656
1-0032
1-0032
0-6390
1-0272
0-6538
0-9576
0-6390
1-0272
0-6538
0-9576

Slice —1
—0-0362
—0-1951
-0-0157
—0-2408
0-2440
0-0848
—-0-0738
—-0-0337
0-2083
0-1549
—0-0862
0-0120
0-2110
-0-0115
0-0422
0-0629
0-1174
—0-1095
0-2673
—-0-0805

Slice —2
-0-0366
+0-0497
-0-0172
0-0593
—0-0083
0-0011
—0-0048
0-0249
-0-0175
0-0160
0-0016
—-0-0140
—0-0161
0-0194
-0-0118
—0-0381
0-0063
0-0092
0-0096
0-0351

Slice -3
0-0049
—0-0049
0-0075
—0-0032
—0-0055
—0-0063
0-0058
0-0059
—0-0001
~0-0072
0-0027
0-0085
~0-0037
0-0118
—0-0020
0-0119
—0-0098
0-0038
—0-0153
0-0002

Total

-1-0213
-1-1038
—0-9880
—1-1474
—1-3755
—1-5260
—1-2859
~1-2160
0-7564
0-7293
0-9213
1-0098
0-8302
1-0469
0-6821
0-9944
07529
0-9307
0-9153
0-9124
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(a)

1 1
- 1
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2O—+0)
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(b)

Fig. 3. (a) Heijnen’s (1986) aragonite (CaCO,) structure projection perpendicular to [110] with slices dq,, and d,,, indicated by dashed
lines; rectangles: COs; squares: Ca. The squares partly overlap because they nearly coincide as seen in (b) which is a unit cell
projected perpendicular to [110]. Small filled circles: C; large open circles: O. The area in black in (a) has a special significance not
related to the present subject (the figure was copied from Heijnen's work).
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Fig. 4. Dependence on 7 of convergence radius approximated by
a straight line, and potential approximated when possible by
a smooth curve, of aragonite face (001) at ion sites Ca(l),
O(1) and O(6). Line drawn according to Fig. 2. (a) Slice 0;
(b) slice —1.
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Fig. 5. Same as Fig. 4 for aragonite face (112).
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distance required for the exponential choice is con-
sistently and considerably larger than for the
Gaussian. This effect is particularly pronounced in
the m =0 (112) slice of aragonite. Indeed there is not
a single example in which the exponential function

(x 101 9.183 A)
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Fig. 6. Surface potential of phlogopite (Table 4), KM, T,0,,(OH),
with M = divalent cation such as Mg®* and T,= Si;Al, disor-
dered, shown as contours (Schreurs, 1985), superimposed on a
projection on the upper half of the unit cell on (001). (a) At
height 0-85 along the ¢ axis; (b) at height 1-0. Because of the
low number of points, equipotential surfaces cross in (b).
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offers any advantage over the Gaussian or is even as
satisfactory.

The Gaussian-based potential is more sensitive to
the choice of 7. The dominance of the direct contribu-
tion over the reciprocal one decreases as the distance
between sampling point and slice increases, as
expected.

We are grateful to Drs A. M. M. Schreurs for putting
his program CONTOUR at our disposal and to Drs
E. van der Voort for her assistance in running some
test cases.
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Fig. 7. Same as Fig. 6 for the electric field magnitude.
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Table 4. Ion positions and charges in phlogopite unit cell with parameters a=5-308, b=9-183, ¢=10-14 A,
a=v=90, B =100-07°, used for the m =0 (001) slice

Ion x y z q
K(11), 001 0 0 1 1
K(12) 0-5 0-5 0 1
T(1) 0-4249 0-1663 0-7755 375
T(2) 0-5751 0-8337 0-2245 3.75
T(3) 0-5751 0-1663 0-2245 3-75
T(4) 0-4249 0-8337 0-7755 375
T(5) 0-9249 0-6663 0-7755 375
T(6) 0-0751 0-3337 0-2245 3.75
T(7) 0-0751 06663 0-2245 375
T(8) 0-9249 0-3337 0-7755 3-75
M(11) 0 0-1694 0-5 2
M(12) 0-5 0-6694 0-5 2
M(13) 0 0-8306 0-5 2
M(14) 0-5 0-3306 05 2
M(21) 0 0-5 0-5 2
M(22) 0-5 0 0-5 2
H(1) 0-0992 0 0-3015 1
H(2) 0-9008 0 0-6985 1
H(3) 0-5992 0-5 0-3015 1
H(4) 0-4008 0-5 0-6985 1
o(11) 0-5274 0 0-1678 =2
0(12) 0-4726 0 0-8322 -2

APPENDIX

List of symbols

a, b, ¢, and a*, b*, ¢* Direct- and

a*=bxe¢/V et reciprocal-lattice
vectors

a, B,y Lattice angles

V=a.bxec Unit-cell volume

A=laxb| Unit-cell area || (001)

f=c*/c*, with c*=A/V
K=2m(Aa*+ ub*+ vc*)

The (001) face normal
Reciprocal-lattice

A, u, v integers translation
k'=27(ra*.n+ub*.n Component of K

+ve®)i 1(001)
k=2miix(Aa*xfi+ub*xf) Component of K

=(27/A)(Abxii+ ufixa) ll(o01)

K =(kK+k™)"7?,
k=1k|=(2m/A)(A*b*+ ua®—2Auab cos y)"?,
k.c=—(2mc/sin’ y)[(A/a)(cos a cos y—cos B)
+(u/b)(cos B cos y—cos a)]
R,=Rla+ Rib+Rlic Ion positions and

=rtz; q;,j=1,...,N  charges
R=R,a+R,b+R.ec=r+z  Arbitrary position
vector

r,r;{|(001) and z,z;1(001)
k.(r,—r+mec) 4
=2a{A(RL~ R,)+u (R}~ Ry)]
+(R.I-R.+m)k.c,

Ion x y z q
0(13) 0-0274 0-5 0-1678 -2
0(14) 0-9726 0-5 0-8322 -2
0(21) 0-1792 0-2347 0-8318 -2
0(22) 0-8208 0-7653 0-1682 -2
0(23) 0-8208 0-2347 0-1682 -2
0(24) 0-1792 0-7653 0-8318 -2
0(25) 0-6792 07347 0-8318 -2
0(26) 0-3208 0-2653 0-1682 -2
0(27) 0-3208 0-7347 0-1682 -2
0(28) 0:6792 0:2653 0-8318 -2
0(31) 0-3709 0-1661 0-6104 -2
0(32) 0-6291 0-8339 0-3896 -2
0(33) 0-6291 0-1661 0-3896 -2
0(34) 0-3709 0-8339 0-6104 -2
0(35) 0-8709 0:6661 0-6104 -2
0(36) 0-2191 0-3339 0-3896 =2
0(37) 0-1291 0-6661 0-3896 =2
0(38) 0-8709 0-3339 0-6104 -2
0O(41) 0-1327 0 0-4017 -2
0(42) 0-8673 0 0-5983 -2
0(43) 0-6327 0-5 0-4017 -2
0(44) 0-3673 0-5 0-5983 -2

zi—z+mV/A

=(RI=R.+m)V/A,
t=Aa+ub+mc Direct-lattice trans-
lation
‘A, u, m integers m is slice index
d).m=R—-R;,—Xa—pub-—me,

A = ||

erf Error function
erfc Complementary error
function
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